# Guanyu Cui ${ }^{1}$ Zhewei Wei＊${ }^{1}$ 

Graph Neural Networks（GNNs）


Embedding function $f(\boldsymbol{X})$ ：map features $\boldsymbol{X} \in \mathbb{R}^{n \times F}$ to initial embeddings $\boldsymbol{Z}^{(0)} \in \mathbb{R}^{n \times d}$ ； Graph propagation／convolution $\operatorname{GP}\left(\boldsymbol{Z}^{(0)} ; \boldsymbol{A}\right)$ ：propagate embedding $K$ times； Read－out／pooling $\mathrm{R}\left(\boldsymbol{Z}^{(K)} ; \boldsymbol{A}\right)$（optional）：pooling for graph－level tasks； Classification function $g(\cdot)$ ：final classification to generate predictions $\boldsymbol{Y}$

## Expressive Power \＆Universality of GNNs

－Spectral GNNs：designing universal filters（e．g．，ChebNet，GPRGNN，BernNet，．．．）． －Spatial GNNs：designing GNNs bounded by $k$－WL tests（e．g．，GIN，．．．）．
There are works exploring relations between GNNs and geometric objects（e．g．，curvature，cel－ lular sheaves）and physical concepts（e．g．，oscillators）．
Q：Can we define universality of spatial GNNs from a geometric perspective？

## Preliminaries

Definition（Equivalent）．For a given graph $G=(V, E)$ ，two node embedding matrices $\boldsymbol{Z}^{(1)}$ and $\boldsymbol{Z}^{(2)} \in \mathbb{R}^{n \times d}$ are equivalent if for all $(i, j) \in E,\left\|\boldsymbol{Z}_{\dot{i}}^{(1)}-\boldsymbol{Z}^{(1)}\right\|_{2}=\left\|\boldsymbol{Z}_{\dot{2}}^{(2)}-\boldsymbol{Z}^{(2)}\right\|_{2}$ holds．

Definition（Congruent）．For a given graph $G=(V, E)$ ，two node embedding matrices $\boldsymbol{Z}^{(1)}$ and $\boldsymbol{Z}^{(2)} \in \mathbb{R}^{n \times d}$ are congruent if for all $i, j \in V,\left\|\boldsymbol{Z}_{i:}^{()}-\boldsymbol{Z}_{j:}^{(1)}\right\|_{2}=\left\|\boldsymbol{Z}_{i:}^{(2)}-\boldsymbol{Z}_{j:}^{(2)}\right\|_{2}$ holds． Definition（Globally Rigid）．For a given graph $G=(V, E)$ ，an embedding matrix $Z$ is globally rigid if all its equivalent embedding matrices $Z^{\prime}$ are also congruent to $Z$ ．
Definition（Rigid）．For a given graph $G=(V, E)$ ，an embedding matrix $Z$ is rigid if all equivalent embeddings that can be obtained by continuous motion from $Z$ are congruent to $Z$ ．


Figure 2．Left：A globally rigid graph in $\mathbb{R}^{2}$ ；Right：A rigid but not globally rigid graph in $\mathbb{R}^{2}$ ，since it has an
equivalent but not congruent embedding． equivalent but not congruent embedding
Definition（Metric Matrix）．The metric matrix of an embedding matrix $Z \in \mathbb{R}^{n \times d}$ is defined as $M_{Z}=\left(\left\|Z_{i:}-Z_{j: 1}\right\|_{2}\right)_{i j}$ ．We also define the mapping from an embedding matrix $Z$ to its metric matrix $M_{Z}$ as $\boldsymbol{M}_{\boldsymbol{Z}}=M(\boldsymbol{Z})$ ．

Defining Spatial－Universality


## Defining Spatial－Universality（Cont＇d）

Theorem（MLPs Are Congruent－Insensitive）．Given two congruent embedding matrices $Z$ Theorem（MLPs Are Congruent－Insensitive）．Given two congruent embedding matrices $\boldsymbol{Z}_{1}$
and $Z_{2}$ ，for any MLP ${ }_{M}$（with biases），there always exists another MLP ${ }_{N}$（also with biases） such that $\operatorname{MLP}_{M}\left(\boldsymbol{Z}_{1}\right)=\operatorname{MLP}_{N}\left(\boldsymbol{Z}_{2}\right)$ ． Idea：


Spatial－Universal：It can arrange nodes with a given metric matrix！ This idea is closely related to the Distance Geometry Problem（DGP）． Distance Geometry Problem（DGP）
Given a positive integer $d$ ，a graph $G=(V, E)$ ，and a symmetric non－negative matrix $M$ decide whether there exists an embedding matrix $Z \in \mathbb{R}^{n \times d}$ ，such that
$\forall(i, j) \in E,\left\|\boldsymbol{Z}_{i:}-\boldsymbol{Z}_{j:}\right\|=\boldsymbol{M}_{i j}$.

## Optimization Objective

## About the Optimization Objective

Full metric matrix：$O\left(n^{2}\right) \Rightarrow$ partial metric matrix on edges：$O(m)$ ．
For globally rigid graphs，partial metric matrix is enough to determine the＂shape＂of the embedding，this modification does not weaken the expressive power．
However，solving the DGP is NP－Hard．We can not directly arrange the nodes，thus we introduce an error－tolerant objective

$$
E_{p}(\boldsymbol{Z} ; \boldsymbol{M}, E)=\frac{1}{2}\|\boldsymbol{A} \odot(M(\boldsymbol{Z})-\boldsymbol{M})\|_{F}^{2}=\sum_{(i, j) \in E} \frac{1}{2}\left(\| \boldsymbol{Z}_{i:}-\boldsymbol{Z}_{j: \|_{2}}-\boldsymbol{M}_{i j}\right)^{2} .
$$

This function is closely related to the raw Stress function $\sigma_{r}$ in the Multidimensional Scaling（MDS）problem and the potential energy of spring networks．


To align with other representative GNNs，we modify $E_{p}$ and add a regularization term to get the final objective．

$$
\mathcal{L}\left(\boldsymbol{Z} ; \boldsymbol{Z}^{(0)}, \boldsymbol{M}, E\right)=(1-\alpha) \tilde{E}_{p}(\boldsymbol{Z} ; \boldsymbol{M}, E)+\alpha\left\|\boldsymbol{Z}-\boldsymbol{Z}^{(0)}\right\|_{F}^{2}
$$

## About the Metric Matrix

$$
=(1-\alpha) E_{p}\left(\boldsymbol{D}^{1 / 2} \boldsymbol{Z} ; \boldsymbol{M}, E\right)+\alpha\left\|\boldsymbol{Z}-\boldsymbol{Z}^{(0)}\right\|_{F}^{2} .
$$

For scenarios with prior knowledge about distances between nodes（e．g．，molecular conformation generation，or graph drawing），directly use them；for other scenarios，learn a metric matrix．
Our idea is to increase the distances between dissimilar nodes and reduce the distances between similar nodes：
1．Introduce edge attention $\alpha_{i j} \in[-1,1]$ ，when $\alpha_{i j} \rightarrow 1 \Leftrightarrow i, j$ tend to belong to the same class，and when $\alpha_{i j} \rightarrow-1 \Leftrightarrow i, j$ tend to belong to different classes；
2．Map the initial embedding matrix $\boldsymbol{Z}^{(0)}$（defined later）to a hidden matrix $\boldsymbol{H}$
3．Use attention mechanisms，such as $\alpha_{i j}=\tanh \left(\boldsymbol{a}^{\top}\left[\boldsymbol{H}_{i:}^{\top} \| \boldsymbol{H}_{j:}^{\top}\right]\right)$ or $\alpha_{i j}=\tanh \left(\boldsymbol{H}_{i:} \boldsymbol{W} \boldsymbol{H}_{j:}^{\top}\right)$ to learn the edge attention；
4．Then we can set $\boldsymbol{M}_{i j}=\frac{1-\alpha_{i j}}{1+\alpha_{i j}+\varepsilon}\left\|\boldsymbol{Z}_{i:}^{(0)}-\boldsymbol{Z}_{j}^{(0)}\right\|$ ，where $\varepsilon$ is a small positive number

## Framework

## The Embedding Function

－A linear layer $f(\boldsymbol{X})=\boldsymbol{X} \boldsymbol{W}+\boldsymbol{1 b}^{\top}$ in linear GNNs，or
－A two－layer MLP $f(\boldsymbol{X})=\sigma\left(\sigma\left(\boldsymbol{X} \boldsymbol{W}_{1}+\mathbf{1} b_{1}^{\top}\right) \boldsymbol{W}_{2}+\mathbf{1 b}_{2}^{\top}\right)$ in spectral GNNs．

## Propagation

－Our goal is to design a propagation method that minimizes the objective．
－It＇s non－convex．Following related works，we employ the stationary point iteration method． By computing the gradient，setting it to zero，rearranging the terms，rewriting it as an By computing the gradient，setting it to zero，rearranging the terms，rewriting
iteration form，substituting $1-\alpha$ with $\beta$ to allow more flexibility，it leads to：

$$
\boldsymbol{Z}^{(k+1)}=(1-\alpha) \boldsymbol{D}^{-1 / 2} \boldsymbol{A} \boldsymbol{D}^{-1 / 2} \boldsymbol{Z}^{(k)}+\beta \boldsymbol{D}^{-1 / 2} \boldsymbol{L}_{\boldsymbol{H}} \boldsymbol{D}^{-1 / 2} \boldsymbol{Z}^{(k)}+\alpha \boldsymbol{Z}^{(0)},
$$

where $\boldsymbol{H}=\boldsymbol{A} \odot \boldsymbol{M} \odot M\left(\boldsymbol{D}^{-1 / 2} \boldsymbol{Z}\right)^{\odot-1}$ ，and $\boldsymbol{L}_{\boldsymbol{H}}=\operatorname{diag}(\boldsymbol{H} \mathbf{1})-\boldsymbol{H}$ ．
－And we have the message－passing form：

$$
\boldsymbol{Z}_{i:}^{(k+1)}=(1-\alpha) \sum_{j \in \mathcal{N}(i)} \frac{\boldsymbol{Z}_{i:}^{(k)}}{\sqrt{d_{i} d_{j}}}+\beta \sum_{j \in \mathcal{N}(i)} \frac{\boldsymbol{M}_{i j}\left(\boldsymbol{Z}_{i:}^{(k)}-\boldsymbol{Z}_{j:}^{(k)}\right)}{\sqrt{d_{i} d_{j}}\left\|\boldsymbol{Z}_{i:}^{(k)} / \sqrt{d_{i}}-\boldsymbol{Z}_{j:}^{(k)} / \sqrt{d_{j}}\right\|_{2}}+\alpha \boldsymbol{Z}_{i:}^{(0)} .
$$

Optional Linear and Non－linear Transformations
We may incorporate linear and non－linear transformations after each propagation step．In our experiments without pre－designed metric matrices，such as node classification，we utilize three designs from the GCNII model：a linear transformation，the identity mapping，and a non－linear transformation（ReLU）．

## The Classification Function

We use a linear layer $g\left(\boldsymbol{Z}^{(K)}\right)=\boldsymbol{Z}^{(K)} \boldsymbol{W}+\mathbf{1} \boldsymbol{b}^{\top}$ as the final classification function．

## Experiments

We have done the＂Arranging Nodes with Given Metric Matrices＂experiments on synthetic graphs，supervised node classification and graph regression experiments on real－world graphs．

## Arranging Nodes with Given Metric Matrices

－We generate two Stochastic Block Model（SBM）graphs，one homophilic and one heterophilic，consisting of four blocks with 50 nodes in each block．
－The node features are sampled from two 2－dimensional Gaussian distributions．

－If $i$ and $j$ are in the same class，we set $\boldsymbol{M}_{i j}=0$ ；otherwise，we set $\boldsymbol{M}_{i j}=5$ ． －We pass the node features through 8 MGNN layers，with $\alpha=0.05$ and $\beta=0.5$ ． －For visualization results，please refer to the smaller posters below or our paper．

## Supervised Node Classification and Graph Regressio

－Our MGNN model performs well，and the results are promising．
－For experiment details and results，please refer to the smaller posters below or our paper

