Mixing Time Matters: Accelerating Effective Resistance Estimation via Bidirectional Method

Hanzhi Wang² Zhewei Wei^{* 1}

²BARC, University of Copenhagen

Effective Resistance (ER)

- A node proximity metric in undirected graphs.
- Applied in spectral sparsification, clustering, network robustness, influence maximization, GNN rewiring, etc.
- Given an undirected graph G and nodes s, t, the effective resistance R(s,t) is the resistance between s and t when each edge is a 1-ohm resistor (Figure 1).

Figure 1. Source of Definition of Effective Resistance

• From physics and graph theory, $R(s,t)=(\boldsymbol{e}_s-\boldsymbol{e}_t)^{\top}\,\boldsymbol{L}^{\dagger}\,(\boldsymbol{e}_s-\boldsymbol{e}_t)$, where \boldsymbol{e}_s is the one-hot vector of node s, $m{L} = m{D} - m{A}$ is the Laplacian, and $m{L}^\dagger$ is its Moore-Penrose pseudoinverse.

Problem Definition

We study single-pair effective resistance (SPER) estimation with an absolute error guarantee:

Single-Pair Effective Resistance (SPER) Estimation with Absolute Error Guarantee

Given a connected undirected graph G = (V, E), nodes $s, t \in V$, absolute error tolerance $\epsilon > 0$, and failure probability $0 < p_f \le 1$, find an estimator $\hat{R}(s,t)$ such that:

$$\Pr\left(\left|\hat{R}(s,t) - R(s,t)\right| < \epsilon\right) \ge 1 - p_f.$$

Related Works

SPER estimation methods can be categorized into four types:

• Transition-Probabilities-Based: reformulates R(s,t) as a series of multi-step transition probabilities:

$$R(s,t) = \sum_{\ell=0}^{\infty} \left(\frac{p^{(\ell)}(s,s)}{d(s)} - \frac{p^{(\ell)}(s,t)}{d(t)} - \frac{p^{(\ell)}(t,s)}{d(s)} + \frac{p^{(\ell)}(t,t)}{d(t)} \right),$$

then truncates the series at $L_{\rm max}$ (denoted as $R_{L_{\rm max}}(s,t)$) and estimates the probabilities. Representative methods:

EstEff-TranProb [Peng et al., KDD'21] and AMC [Yang et al., SIGMOD'23]: use Monte Carlo to sample a batch of random walks

GEER [Yang et al., SIGMOD'23]: combines power iteration and random walks

- Landmark-Based: reformulates R(s,t) using hitting probabilities. Includes single-landmark methods [Liao et al., SIGMOD'23] and multi-landmark methods [Liao et al., SIGMOD'24]. Cannot set algorithm parameters to achieve an error guarantee.
- Commute-Time-Based: estimates commute-time-based formulations of R(s,t). E.g., EstEff-MC [Peng et al., KDD'21].
- Laplacian-Solver-Based: solves $Lx = (e_s e_t)$ and computes R(s,t). Theoretically sound but challenging to implement in practice.

Related Works (Cont'd)

Table 1 summarizes time complexity of related works.

¹Renmin University of China

Table 1. Time complexity of the algorithms.

Method	Query Time
EstEff-TranProb [Peng et al., KDD'21]	$\tilde{O}\left(\frac{L_{\max}^4}{\epsilon^2}\right)$
AMC / GEER [Yang et al., SIGMOD'23]	$\tilde{O}\left(\frac{L_{\max}^3}{\epsilon^2 d^2}\right)$
EstEff-MC [Peng et al., KDD'21]	$\tilde{O}\left(\frac{m}{(1-\lambda_2)^2\epsilon^2d}\right)$
Laplacian Solvers	$\widetilde{O}(m)$
BiSPER (Ours)	$\left \tilde{O}\left(\min\left\{ \frac{L_{\max}^{7/3}}{\epsilon^{2/3}}, \frac{L_{\max}^3}{\epsilon^2 d^2}, mL_{\max} \right\} \right) \right $

Algorithm

Overview

- Forward Push with Binary Indexed Trees (BITs) + Backward Adaptive Monte Carlo.
- For each node $u \in V$ and step $0 \le \ell \le L_{\max}$, maintain two quantities: reserves $q_s^{(\ell)}(u), q_t^{(\ell)}(u)$, which capture accumulated probability mass, and residues $r_s^{(\ell)}(u), r_t^{(\ell)}(u),$ which represent the remaining probability to be propagated to the next layer.

Forward Push with Binary Indexed Trees

- Attach a Binary Indexed Tree (BIT) to the reserve and residue vectors of each node to dynamically maintain their prefix sums.
- First, set $r_s^{(0)}(s) = 1$ and $r_t^{(0)}(t) = 1$, with all other values initialized to zero. Then, for each layer $\ell=0,1,\cdots,L_{\max}$, and for any node u whose degree-normalized residue ${m r}_s^{(\ell)}(u)/d(u)$ or $r_t^{(\ell)}(u)/d(u)$ exceeds a threshold r_{max} , invoke the following Forward Push procedure:

Backward Adaptive Monte Carlo

- Sample N L_{\max} -step random walks from s and t and construct an estimator.
- For the *i*-th random walk, let the sampled nodes be $s=v_{s,i}^{(0)},v_{s,i}^{(1)},\cdots,v_{s,i}^{(L_{\max})}$, $t = v_{t,i}^{(0)}, v_{t,i}^{(1)}, \cdots, v_{t,i}^{(L_{ ext{max}})}$, and let

$$\begin{split} \hat{R}_{L_{\max}}(s,t) &= \sum_{\ell=0}^{L_{\max}} \left(\frac{\boldsymbol{q}_{s}^{(\ell)}(s)}{d(s)} - \frac{\boldsymbol{q}_{s}^{(\ell)}(t)}{d(t)} \right) + \sum_{\ell=0}^{L_{\max}} \left(\frac{\boldsymbol{q}_{t}^{(\ell)}(t)}{d(t)} - \frac{\boldsymbol{q}_{t}^{(\ell)}(s)}{d(s)} \right) \\ &+ \frac{1}{N} \sum_{i=1}^{N} \sum_{\ell=0}^{L_{\max}} \underbrace{\left(\sum_{k=0}^{L_{\max}-\ell} \frac{\boldsymbol{r}_{s}^{(k)}(\boldsymbol{v}_{s,i}^{(\ell)})}{d(\boldsymbol{v}_{s,i}^{(\ell)})} - \sum_{k=0}^{L_{\max}-\ell} \frac{\boldsymbol{r}_{t}^{(k)}(\boldsymbol{v}_{t,i}^{(\ell)})}{d(\boldsymbol{v}_{t,i}^{(\ell)})} \right)}{d(\boldsymbol{v}_{t,i}^{(\ell)})} + \frac{1}{N} \sum_{i=1}^{N} \sum_{\ell=0}^{L_{\max}-\ell} \frac{\boldsymbol{r}_{t}^{(k)}(\boldsymbol{v}_{t,i}^{(\ell)})}{d(\boldsymbol{v}_{t,i}^{(\ell)})} - \sum_{k=0}^{L_{\max}-\ell} \frac{\boldsymbol{r}_{s}^{(k)}(\boldsymbol{v}_{s,i}^{(\ell)})}{d(\boldsymbol{v}_{s,i}^{(\ell)})} \right) \\ &= \text{query BIT} \end{split}$$

Theoretical Results

- We derive the following two theorems through refined analysis:
- Theorem 1 (Correctness). The estimator $\hat{R}_{L_{\max}}(s,t)$ is an unbiased estimator of $R_{L_{\max}}(s,t)$ and satisfies the absolute error guarantee.
- Theorem 2 (Time Complexity). The worst-case time complexity of our algorithm is

Experiments

We randomly fix 100 source-target node pairs from each dataset and evaluate the performance of each algorithm on these pairs.

Experiment I: Query Efficiency for $R_{L_{\max}}(s,t)$ on Real-World Graphs

- Set $L_{\rm max}=100$, and evaluate each algorithm's performance in estimating $R_{L_{\rm max}}(s,t)$;
- ullet This reflects the need for a large $L_{
 m max}$ to accurately approximate SPER. Since computing ground-truth on large graphs via Power Iteration is infeasible, we rely on this setting.

Experiment II: Query Efficiency for R(s,t) **on Real-World Graphs**

• For small graphs, L_{\max} can be set sufficiently large to closely approximate R(s,t).

Experiment III: Query Efficiency for R(s,t) **on Synthetic Graphs**

 Conduct Experiment II on a synthetic Erdős-Rényi random graph with parameters (n,p) = (5000, 0.005).

