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Effective Resistance (ER)

= A node proximity metric in undirected graphs.

= Applied in spectral sparsification, clustering, network robustness, influence maximization, GNN
rewiring, etc.

= Given an undirected graph GG and nodes s, t, the effective resistance R(s,t) is the resistance
between s and ¢ when each edge is a 1-ohm resistor (Figure 1).
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Figure 1. Source of Definition of Effective Resistance

= From physics and graph theory, R(s,t) = (es — e;)' L' (es — e;), where e is the one-hot vector of
node s, L = D — A is the Laplacian, and LT is its Moore-Penrose pseudoinverse.

Problem Definition

We study single-pair effective resistance (SPER) estimation with an absolute error guarantee:

Single-Pair Effective Resistance (SPER) Estimation with Absolute Error Guarantee

Given a connected undirected graph G = (V, E), nodes s, € V, absolute error tolerance € > 0, and
failure probability 0 < p; < 1, find an estimator R(s, ) such that:

Pr ( R(s,t) — R(s,1)| < e) >1—py

Related Works

SPER estimation methods can be categorized into four types:
= Transition-Probabilities-Based: reformulates R(s,t) as a series of multi-step transition

probabilities:
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then truncates the series at L4« (denoted as RLmaX(Sv t)) and estimates the probabilities.
Representative methods:

1. EstEff-TranProb [Peng et al., KDD’21] and AMC [Yang et al., SIGMOD’23]: use Monte Carlo to sample a batch of
random walks
/

)

2. GEER [Yang et al., SIGMOD’23]: combines power iteration and random walks
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= Landmark-Based: reformulates R(s,t) using hitting probabilities. Includes single-landmark
methods [Liao et al., SIGMOD’23] and multi-landmark methods [Liao et al., SIGMOD’24]. Cannot
set algorithm parameters to achieve an error guarantee.

= Commute-Time-Based: estimates commute-time-based formulations of R(s,?). E.g., EstEff-MC
[Peng et al., KDD’21].

= Laplacian-Solver-Based: solves Lx = (es — e;) and computes R(s,t). Theoretically sound but
challenging to implement in practice.

Mixing Time Matters: Accelerating Effective Resistance Estimation via Bidirectional Method
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Related Works (Cont'd)

Table 1 summarizes time complexity of related works.

Table 1. Time complexity of the algorithms.

Method Query Time
~ 4
EstEff-TranProb [Peng et al., KDD'21] O %
~ 3
AMC / GEER [Yang et al., SIGMOD’23] O ( Zpsx
EStEFf-MC [Peng et al., KDD'21] O (=%2)
Laplacian Solvers O (m)
: ~( L3 I3
BiSPER (Ours) O [ min Egl/aéx, Eénﬁ,m[zmax
Algorithm

Overview

= Forward Push with Binary Indexed Trees (BITs) + Backward Adaptive Monte Carlo.
(£)

= For each node u € V and step 0 < ¢ < Lax, Maintain two quantities: reserves g

(u), qg)(U),

which capture accumulated probability mass, and residues r@(u), r§€>(u), which represent the
remaining probability to be propagated to the next layer.

Forward Push with Binary Indexed Trees

= Attach a Binary Indexed Tree (BIT) to the reserve and residue vectors of each node to dynamically
maintain their prefix sums.

= First, set rgo)(s) = 1 and rg()) (t) = 1, with all other values initialized to zero. Then, for each layer

¢ =0,1,---, Lnax, and for any node u whose degree-normalized residue frg@(u)/d(u) or
ry)(u)/d(u) exceeds a threshold r,.«, invoke the following Forward Push procedure:
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Backward Adaptive Monte Carlo

= Sample N L.x-step random walks from s and ¢ and construct an estimator.

* For the i-th random walk, let the sampled nodes be s = Ugoi), vg, X ,vglgmax>,

t = vgg), vgjlz.), ce ,vlg’%m‘“), and let
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Theoretical Results

= We derive the following two theorems through refined analysis:

* Theorem 1 (Correctness). The estimator R L...(5,t) isan unbiased estimator of Ry (s,?) and
satisfies the absolute error guarantee.

= Theorem 2 (Time Complexity). The worst-case time complexity of our algorithm is
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Experiments

We randomly fix 100 source-target node pairs from each dataset and evaluate the performance of
each algorithm on these pairs.

Experiment I: Query Efficiency for R;  (s,?) on Real-World Graphs

" Set Liax = 100, and evaluate each algorithm’s performance in estimating Ry (s,1);

= This reflects the need for a large L5« to accurately approximate SPER. Since computing
ground-truth on large graphs via Power lteration is infeasible, we rely on this setting.
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Experiment Il: Query Efficiency for R(s,t) on Real-World Graphs

= For small graphs, L,ax can be set sufficiently large to closely approximate R(s,t).
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Experiment Ill: Query Efficiency for R(s,t) on Synthetic Graphs

= Conduct Experiment |l on a synthetic Erd6s-Rényi random graph with parameters
(n,p) = (5000, 0.005).

—<5— BIiSPER —8— GEER —e— Bipush
—e— Push —— AbWalk Bipush-vl
—#+— Push-vl —A— RW-vI

Average Absolute Error

5

10° 10 10" 100 10
Average Query Time (ms)

*Zhewei Wel is the corresponding author. Contact us: cuiguanyu@ruc.edu.cn; zhewei@ruc.edu.cn



