MGNN: Graph Neural Networks Inspired by Distance Geometry Problem

Presentation

Guanyu Cui, Zhewei Wei*

Gaoling School of Artificial Intelligence
Renmin University of China

Graph Neural Networks

- Graph Neural Networks (GNNs) have become a central topic in graph learning;
- They have found diverse applications in
- physics simulation,
- traffic forecasting,
- recommendation systems, and more...

Graph Neural Networks

- A typical GNN architecture consists of some key components.

Expressive Power \& Universality of GNNs

- Many studies have explored the expressive power and universality of GNNs.
- Spectral GNNs: Design universal graph filters.
- Spatial GNNs: Explore the connection between expressive power of GNNs and the WL-test.

Rooted subtree

GNN aggregation

Image taken from Xu et al., How Powerful are Graph Neural Networks? (ICLR 2019)

GNNs and Geometric / Physical Objects

- Growing interest in exploring the connections between GNNs and various geometric and physical objects, such as:
- graph curvature,
- oscillators...
- No works have attempted to define the universality from a geometric perspective. - The gap our paper aims to fill.

Equivalent \& Congruent

Definition (Equivalent)

Two embedding matrices $\boldsymbol{Z}^{(1)}$ and $\boldsymbol{Z}^{(2)} \in \mathbb{R}^{n \times d}$ of a graph G are equivalent (denoted as $\boldsymbol{Z}^{(1)} \equiv_{E} \boldsymbol{Z}^{(2)}$) if

$$
\left\|\boldsymbol{Z}_{i:}^{(1)}-\boldsymbol{Z}_{j:}^{(1)}\right\|_{2}=\left\|\boldsymbol{Z}_{i:}^{(2)}-\boldsymbol{Z}_{j:}^{(2)}\right\|_{2} \text { for all }(i, j) \in E .
$$

Definition (Congruent)

Two embedding matrices $\boldsymbol{Z}^{(1)}$ and $\boldsymbol{Z}^{(2)} \in \mathbb{R}^{n \times d}$ of a graph G are congruent (denoted as $\boldsymbol{Z}^{(1)} \cong_{V^{2}} \boldsymbol{Z}^{(2)}$) if $\left\|\boldsymbol{Z}_{i:}^{(1)}-\boldsymbol{Z}_{j:}^{(1)}\right\|_{2}=\left\|\boldsymbol{Z}_{i:}^{(2)}-\boldsymbol{Z}_{j:}^{(2)}\right\|_{2}$ for all $i, j \in V$.

Graph Rigidity

Definition (Globally Rigid)

An embedding matrix \boldsymbol{Z} of a graph G is globally rigid if all its equivalent embedding matrices \boldsymbol{Z}^{\prime} are also congruent to \boldsymbol{Z}.

Metric Matrix

Definition (The Metric Matrix of an Embedding Matrix)

The metric matrix of an embedding matrix $\boldsymbol{Z} \in \mathbb{R}^{n \times d}$ is defined as a matrix that contains all pairwise distances between the embedding vectors, i.e., $\left(\boldsymbol{M}_{\boldsymbol{Z}}\right)_{i j}=\left\|\boldsymbol{Z}_{i:}-\boldsymbol{Z}_{j}:\right\|_{2}$.

- We also define a mapping from an embedding matrix \boldsymbol{Z} to its metric matrix $\boldsymbol{M}_{\boldsymbol{Z}}$ as $\boldsymbol{M}_{\boldsymbol{Z}}=M(\boldsymbol{Z})$.

An Observation

Formalize the Observation

Theorem (MLPs Are Congruent-Insensitive)

Given two congruent embedding matrices \boldsymbol{Z}_{1} and \boldsymbol{Z}_{2}, for any MLP_{M}, there always exists another MLP_{N} such that they produce identical predictions, i.e., $\operatorname{MLP}_{M}\left(\boldsymbol{Z}_{1}\right)=\operatorname{MLP}_{N}\left(\boldsymbol{Z}_{2}\right)$.

Spatial-Universality

- Spatial-Universal: It can generate an embedding with the given metric matrix!
- The metric matrix serves as a guiding program to arrange the nodes.
- Closely related to the Distance Geometry Problem (DGP).

The Distance Geometry Problem (DGP)

Distance Geometry Problem (DGP)

Given a positive integer d, a graph $G=(V, E)$, and a symmetric non-negative metric matrix \boldsymbol{M}, decide whether there exists an embedding matrix $\boldsymbol{Z} \in \mathbb{R}^{n \times d}$, such that

$$
\forall(i, j) \in E,\left\|\boldsymbol{Z}_{i:}-\boldsymbol{Z}_{j:}\right\|=\boldsymbol{M}_{i j}
$$

Balance Efficiency and Expressive Power

- Full metric matrix: $O\left(n^{2}\right) \Rightarrow$ partial metric matrix: $O(m)$;

Does this change affect the expressive power? Yes.

- For any globally rigid graph, the full "shape" is determined by partial metric matrix;
- For other cases, the "shape" cannot be determined, which weakens the expressive power.
- The challenge is, deciding global rigidity and solving the DGP are both NP-hard (Saxes 1979), making it difficult to effectively find an embedding that satisfy the metric constraint.

Optimization Objective

- To address this, we utilize an optimization objective to approximately arrange the nodes.

$$
\begin{aligned}
E_{p}(\boldsymbol{Z} ; \boldsymbol{M}, E) & =\frac{1}{2}\|\boldsymbol{A} \odot(M(\boldsymbol{Z})-\boldsymbol{M})\|_{F}^{2} \\
& =\sum_{(i, j) \in E} \frac{1}{2}\left(\left\|\boldsymbol{Z}_{i:}-\boldsymbol{Z}_{j:}\right\|_{2}-\boldsymbol{M}_{i j}\right)^{2}
\end{aligned}
$$

- This objective is derived from the raw stress function in the Multidimensional Scaling (MDS) problem.

Align with Other GNNs

- To make our optimization objective consistent with other GNNs, we make certain modifications:
- Re-parameterize \boldsymbol{Z} as $\boldsymbol{D}^{-1 / 2} \boldsymbol{Z}$ to obtain the normalized Laplacian matrix, aligning it with representative GNNs;
- Introduce a trade-off regularization term $\left\|\boldsymbol{Z}-\boldsymbol{Z}^{(0)}\right\|_{F}^{2}$ to align with graph signal de-noising and other optimization derived GNNs;
- Then we get the final form of the objective function:

$$
\begin{aligned}
\mathcal{L}\left(\boldsymbol{Z} ; \boldsymbol{Z}^{(0)}, \boldsymbol{M}, E\right) & =(1-\alpha) \tilde{E}_{p}(\boldsymbol{Z} ; \boldsymbol{M}, E)+\alpha\left\|\boldsymbol{Z}-\boldsymbol{Z}^{(0)}\right\|_{F}^{2} \\
& =(1-\alpha) E_{p}\left(\boldsymbol{D}^{1 / 2} \boldsymbol{Z} ; \boldsymbol{M}, E\right)+\alpha\left\|\boldsymbol{Z}-\boldsymbol{Z}^{(0)}\right\|_{F}^{2} .
\end{aligned}
$$

About the Metric Matrix

- In scenarios where we have prior knowledge about the distances between nodes, like,
- molecular conformation generation, or
- graph drawing,
we can directly use that pre-designed metric matrix.
- In other scenarios without a pre-designed metric matrix, we need to learn one from data.

About the Metric Matrix

- General idea: Increase the distances between dissimilar nodes and reduce the distances between similar nodes.
- Introduce edge attention $\alpha_{i j} \in[-1,1]$:
- $\alpha_{i j}$ approaches $1 \Leftrightarrow i, j$ tend to belong to the same class;
- $\alpha_{i j}$ approaches $-1 \Leftrightarrow i, j$ tend to belong to different classes; inspired by research on heterophilic graphs and signed graphs.

About the Metric Matrix

(1) Map the initial embedding $\boldsymbol{Z}^{(0)}$ (defined later) to a hidden matrix \boldsymbol{H} via an MLP;
(2) Use attention mechanisms, such as

- concatenation: $\alpha_{i j}=\tanh \left(\boldsymbol{a}^{\top}\left[\boldsymbol{H}_{i:}^{\top} \| \boldsymbol{H}_{j:}^{\top}\right]\right)$;
- bilinear: $\alpha_{i j}=\tanh \left(\boldsymbol{H}_{i:} \boldsymbol{W} \boldsymbol{H}_{j:}^{\top}\right)$;
to learn the edge attention;
(3) Then we can set $\boldsymbol{M}_{i j}=\frac{1-\alpha_{i j}}{1+\alpha_{i j}+\varepsilon}\left\|\boldsymbol{Z}_{i:}^{(0)}-\boldsymbol{Z}_{j}^{(0)}\right\|$, where ε is a small positive number.

The Embedding Function

- The first part is the embedding function $f_{\theta}(\boldsymbol{X})$, which maps node features into a d-dimensional latent space to get the initial embedding $\boldsymbol{Z}^{(0)}$.
- Common choices for this function include:
- Linear layers $f(\boldsymbol{X})=\boldsymbol{X} \boldsymbol{W}+\mathbf{1 b}^{\top}$ in linear GNNs, or
- Shallow MLPs $f(\boldsymbol{X})=\sigma\left(\sigma\left(\boldsymbol{X} \boldsymbol{W}_{1}+\mathbf{1} \boldsymbol{b}_{1}^{\top}\right) \boldsymbol{W}_{2}+\mathbf{1} \boldsymbol{b}_{2}^{\top}\right)$ in spectral GNNs.

Propagation

- The second part is the propagation module.
- Goal: Design a graph propagation method that minimizes the objective function.
- Since the objective is typically non-convex, finding its global minimum is challenging.
- Following related works that optimize the raw stress function $E_{p}(\boldsymbol{Z} ; \boldsymbol{M}, E)$, we use stationary point iteration method.

Propagation

- By computing the gradient of \mathcal{L}, setting it to 0 , and rearranging the terms, we obtain the following equation:

$$
\begin{aligned}
& \boldsymbol{Z}=(1-\alpha) \boldsymbol{D}^{-1 / 2} \boldsymbol{A} \boldsymbol{D}^{-1 / 2} \boldsymbol{Z}+(1-\alpha) \boldsymbol{D}^{-1 / 2} \boldsymbol{L}_{\boldsymbol{H}} \boldsymbol{D}^{-1 / 2} \boldsymbol{Z}+\alpha \boldsymbol{Z}^{(0)}, \\
& \text { where } \boldsymbol{H}=\boldsymbol{A} \odot \boldsymbol{M} \odot M\left(\boldsymbol{D}^{-1 / 2} \boldsymbol{Z}\right)^{\odot-1} \text {, and } \\
& \boldsymbol{L}_{\boldsymbol{H}}=\operatorname{diag}(\boldsymbol{H} \mathbf{1})-\boldsymbol{H} ;
\end{aligned}
$$

Propagation

- Rewriting it as an iteration form and substituting $1-\alpha$ with β to allow more flexibility, it leads to the final propagation equation:

$$
\boldsymbol{Z}^{(k+1)}=(1-\alpha) \boldsymbol{D}^{-1 / 2} \boldsymbol{A} \boldsymbol{D}^{-1 / 2} \boldsymbol{Z}^{(k)}+\beta \boldsymbol{D}^{-1 / 2} \boldsymbol{L}_{\boldsymbol{H}} \boldsymbol{D}^{-1 / 2} \boldsymbol{Z}^{(k)}+\alpha \boldsymbol{Z}^{(0)}
$$

- We also have the message-passing form of the propagation rule:

$$
\boldsymbol{Z}_{i:}^{(k+1)}=(1-\alpha) \sum_{j \in N(i)} \frac{\boldsymbol{Z}_{i:}^{(k)}}{\sqrt{d_{i} d_{j}}}+\beta \sum_{j \in \mathcal{N}(i)} \frac{\boldsymbol{M}_{i j}\left(\boldsymbol{Z}_{i:}^{(k)}-\boldsymbol{Z}_{j}^{(k)}\right)}{\sqrt{d_{i} d_{j}} \left\lvert\, \frac{z_{i}^{(k)}}{\sqrt{d_{i}}}-\frac{z_{j:}^{(k)}}{\sqrt{d_{j}}}\right. \|_{2}}+\alpha \boldsymbol{Z}_{i:}^{(0)} .
$$

Optional Linear and Non-Linear Transformations

- The third part is the optional linear and non-linear transformations.
- After each propagation step, we have the flexibility to incorporate them into our model.
- In our experiments without pre-designed metric matrices, such as node classification, we adopt three designs from the GCNII model:
- a linear transformation,
- the identity mapping,
- and a non-linear transformation (ReLU).

The Classification Function

- The last part is the final classification function $g_{\theta}\left(\boldsymbol{Z}^{(L)}\right)$, which maps the embeddings to the output dimension.
- We choose a linear layer

$$
g\left(\boldsymbol{Z}^{(L)}\right)=\boldsymbol{Z}^{(L)} \boldsymbol{W}+\mathbf{1} \boldsymbol{b}^{\top}
$$

to be the classification function.

Experiments

- We conducted "Arranging Nodes with Given Metric Matrices" experiments on synthetic graphs.
- Additionally, we also performed supervised node classification and graph regression experiments using our MGNN model.

Experiments

- In the first experiment, we generate two stochastic block model (SBM) graphs, one homophilic and one heterophilic, with 4 blocks, each containing 50 nodes;
- The nodes features are sampled from two 2-dimensional Gaussian distributions.
- We visualize the graphs in the figures below.

original

original

Experiments

- For the metric matrix, if i and j are in the same class, we set $\boldsymbol{M}_{i j}=0$; otherwise, we set $\boldsymbol{M}_{i j}=5$;
- We pass the node features through 8 MGNN propagation layers, with $\alpha=0.05, \beta=0.5$.
- The results show that our MGNN model separates the blocks.

MGNN-8

MGNN-8

Experiments

- We also conducted supervised node classification and graph regression experiments, and the results are promising.
- For detailed experiment information and results, please refer to our paper.

Summary

- We introduced the concept of spatial-universal GNNs;
- We proposed an optimization objective and designed the MGNN model, to balance efficiency and expressive power;
- We demonstrated the effectiveness of our model through extensive experiments.

Thanks!

Q\&A

Contact us: cuiguanyu@ruc.edu.cn, zhewei@ruc.edu.cn

