

Guanyu Cui, Zhewei Wei*

Gaoling School of Artificial Intelligence Renmin University of China

Introduction	Preliminaries	Spatial-Universality	Optimization Objective	Framework	Experiments	Summary
●000	000	0000		000000	0000	00
Graph N	eural Net	works				

- Graph Neural Networks (GNNs) have become a central topic in graph learning;
- They have found diverse applications in
 - physics simulation,
 - traffic forecasting,
 - recommendation systems, and more...

Guanyu Cui, Zhewei Wei*

Gaoling School of Artificial Intelligence Renmin University of China

• A typical GNN architecture consists of some key components.

Guanyu Cui, Zhewei Wei*

Gaoling School of Artificial Intelligence Renmin University of China

- Many studies have explored the expressive power and universality of GNNs.
- Spectral GNNs: Design universal graph filters.
- Spatial GNNs: Explore the connection between expressive power of GNNs and the WL-test.

Image taken from Xu et al., How Powerful are Graph Neural Networks? (ICLR 2019)

GNNs and Geometric / Physical Objects

- Growing interest in exploring the connections between GNNs and various geometric and physical objects, such as:
 - graph curvature,
 - oscillators...
- No works have attempted to define the universality from a geometric perspective. — The gap our paper aims to fill.

Introduction	Preliminaries	Spatial-Universality	Optimization Objective	Framework	Experiments	Summary
0000	●00	0000		000000	0000	00

Equivalent & Congruent

Definition (Equivalent)

Two embedding matrices $Z^{(1)}$ and $Z^{(2)} \in \mathbb{R}^{n \times d}$ of a graph G are equivalent (denoted as $Z^{(1)} \equiv_E Z^{(2)}$) if $\|Z_{i:}^{(1)} - Z_{j:}^{(1)}\|_2 = \|Z_{i:}^{(2)} - Z_{j:}^{(2)}\|_2$ for all $(i, j) \in E$.

Definition (Congruent)

Two embedding matrices $Z^{(1)}$ and $Z^{(2)} \in \mathbb{R}^{n \times d}$ of a graph G are congruent (denoted as $Z^{(1)} \cong_{V^2} Z^{(2)}$) if $\|Z_{i:}^{(1)} - Z_{j:}^{(1)}\|_2 = \|Z_{i:}^{(2)} - Z_{j:}^{(2)}\|_2$ for all $i, j \in V$.

Guanyu Cui, Zhewei Wei*

Gaoling School of Artificial Intelligence Renmin University of China

Introduction	Preliminaries	Spatial-Universality	Optimization Objective	Framework	Experiments	Summary
0000	0●0	0000		000000	0000	00
Graph R	igidity					

Definition (Globally Rigid)

An embedding matrix Z of a graph G is globally rigid if all its equivalent embedding matrices Z' are also congruent to Z.

Gaoling School of Artificial Intelligence Renmin University of China

Introduction	Preliminaries	Spatial-Universality	Optimization Objective	Framework	Experiments	Summary
0000	00●	0000		000000	0000	00
Motrie N	Actrix					

Definition (The Metric Matrix of an Embedding Matrix)

The metric matrix of an embedding matrix $Z \in \mathbb{R}^{n \times d}$ is defined as a matrix that contains all pairwise distances between the embedding vectors, i.e., $(M_Z)_{ij} = \|Z_{i:} - Z_{j:}\|_2$.

• We also define a mapping from an embedding matrix Z to its metric matrix M_Z as $M_Z = M(Z)$.

Guanyu Cui, Zhewei Wei*

Guanyu Cui, Zhewei Wei*

Gaoling School of Artificial Intelligence Renmin University of China

Introduction	Preliminaries	Spatial-Universality	Optimization Objective	Framework	Expe
0000	000	0●00		000000	000

Formalize the Observation

Theorem (MLPs Are Congruent-Insensitive)

Given two congruent embedding matrices Z_1 and Z_2 , for any MLP_M, there always exists another MLP_N such that they produce identical predictions, i.e., MLP_M(Z_1) = MLP_N(Z_2).

Guanyu Cui, Zhewei Wei*

Introduction 0000	Preliminaries 000	Spatial-Universality 00●0	Optimization Objective	Framework 000000	Experiments 0000	Summary 00
Spatial-l	Jniversalit	ïy				

- **Spatial-Universal**: It can generate an embedding with the given metric matrix!
- The metric matrix serves as a guiding program to arrange the nodes.
- Closely related to the Distance Geometry Problem (DGP).

Guanyu Cui, Zhewei Wei*

Gaoling School of Artificial Intelligence Renmin University of China

Guanvu Cui. Zhewei Wei*

Preliminaries

0000

The Distance Geometry Problem (DGP)

MGNN: Graph Neural Networks Inspired by Distance Geometry Problem

Gaoling School of Artificial Intelligence Renmin University of China

12 / 30

Distance Geometry Problem (DGP)

Given a positive integer d, a graph G = (V, E), and a symmetric non-negative metric matrix M, decide whether there exists an embedding matrix $\boldsymbol{Z} \in \mathbb{R}^{n \times d}$, such that

 $\forall (i,j) \in E, \|\boldsymbol{Z}_{i:} - \boldsymbol{Z}_{j:}\| = \boldsymbol{M}_{ij}.$

Balance Efficiency and Expressive Power

Preliminaries

• Full metric matrix: $O(n^2) \Rightarrow$ partial metric matrix: O(m);

00000

Does this change affect the expressive power? $\frac{1}{2}$ Yes.

Optimization Objective

- For any globally rigid graph, the full "shape" is determined by partial metric matrix;
- For other cases, the "shape" cannot be determined, which weakens the expressive power.
- The challenge is, deciding global rigidity and solving the DGP are both NP-hard (Saxes 1979), making it difficult to effectively find an embedding that satisfy the metric constraint.

Optimization Objective

• To address this, we utilize an optimization objective to approximately arrange the nodes.

$$E_p(\mathbf{Z}; \mathbf{M}, E) = \frac{1}{2} \| \mathbf{A} \odot (M(\mathbf{Z}) - \mathbf{M}) \|_F^2$$

= $\sum_{(i,j)\in E} \frac{1}{2} (\| \mathbf{Z}_{i:} - \mathbf{Z}_{j:} \|_2 - \mathbf{M}_{ij})^2.$

• This objective is derived from the raw stress function in the **Multidimensional Scaling (MDS)** problem.

Introduction	Preliminaries	Spatial-Universality	Optimization Objective	Framework	Experiments	Summary
0000	000	0000		000000	0000	00
A 1:						

- To make our optimization objective consistent with other GNNs, we make certain modifications:
 - Re-parameterize Z as D^{-1/2}Z to obtain the normalized Laplacian matrix, aligning it with representative GNNs;
 - Introduce a trade-off regularization term ||Z Z⁽⁰⁾||²_F to align with graph signal de-noising and other optimization derived GNNs;
- Then we get the final form of the objective function: $\mathcal{L}(\boldsymbol{Z}; \boldsymbol{Z}^{(0)}, \boldsymbol{M}, E) = (1 - \alpha) \tilde{E}_p(\boldsymbol{Z}; \boldsymbol{M}, E) + \alpha \|\boldsymbol{Z} - \boldsymbol{Z}^{(0)}\|_F^2$ $= (1 - \alpha) E_p(\boldsymbol{D}^{1/2}\boldsymbol{Z}; \boldsymbol{M}, E) + \alpha \|\boldsymbol{Z} - \boldsymbol{Z}^{(0)}\|_F^2.$

Guanyu Cui, Zhewei Wei*

Align with Other Givins

Introduction 0000	Preliminaries 000	Spatial-Universality 0000	Optimization Objective	Framework 000000	Experiments 0000	Summary 00
About th	na Matric	Matrix				

- In scenarios where we have prior knowledge about the distances between nodes, like,
 - molecular conformation generation, or
 - graph drawing,

we can directly use that pre-designed metric matrix.

• In other scenarios without a pre-designed metric matrix, we need to learn one from data.

Introduction 0000	Preliminaries 000	Spatial-Universality 0000	Optimization Objective	Framework 000000	Experiments 0000	Summary 00
About th	no Motric	Matrix				

- General idea: Increase the distances between dissimilar nodes and reduce the distances between similar nodes.
- Introduce edge attention $\alpha_{ij} \in [-1, 1]$:
 - α_{ij} approaches $1 \Leftrightarrow i, j$ tend to belong to the same class;
 - α_{ij} approaches $-1 \Leftrightarrow i, j$ tend to belong to different classes;

inspired by research on heterophilic graphs and signed graphs.

Introduction	Preliminaries	Spatial-Universality	Optimization Objective	Framework	Experiments	Summary
0000	000	0000	00000●	000000	0000	00
A		A.A				

About the Metric Matrix

- Map the initial embedding Z⁽⁰⁾ (defined later) to a hidden matrix H via an MLP;
- Ø Use attention mechanisms, such as
 - concatenation: $\alpha_{ij} = \tanh\left(\boldsymbol{a}^{\top}[\boldsymbol{H}_{i:}^{\top}\|\boldsymbol{H}_{j:}^{\top}]\right);$
 - bilinear: $\alpha_{ij} = \tanh\left(\boldsymbol{H}_{i:}\boldsymbol{W}\boldsymbol{H}_{j:}^{\top}\right);$

to learn the edge attention;

3 Then we can set $M_{ij} = \frac{1-\alpha_{ij}}{1+\alpha_{ij}+\varepsilon} \|Z_{i:}^{(0)} - Z_{j:}^{(0)}\|$, where ε is a small positive number.

Introduction	Preliminaries	Spatial-Universality	Optimization Objective	Framework	Experiments	Summary
0000	000	0000		●00000	0000	00
The Em	hedding F	unction				

The Embedding Function

- The first part is the embedding function $f_{\theta}(\mathbf{X})$, which maps node features into a *d*-dimensional latent space to get the initial embedding $\mathbf{Z}^{(0)}$.
- Common choices for this function include:
 - Linear layers $f(\boldsymbol{X}) = \boldsymbol{X} \boldsymbol{W} + \boldsymbol{1} \boldsymbol{b}^{ op}$ in linear GNNs, or
 - Shallow MLPs $f(\mathbf{X}) = \sigma(\sigma(\mathbf{X}\mathbf{W}_1 + \mathbf{1}\mathbf{b}_1^{\top})\mathbf{W}_2 + \mathbf{1}\mathbf{b}_2^{\top})$ in spectral GNNs.

Introduction	Preliminaries	Spatial-Universality	Optimization Objective	Framework	Experiments	Summary
0000	000	0000		0●0000	0000	00
Propaga	tion					

- The second part is the propagation module.
- Goal: Design a graph propagation method that minimizes the objective function.
- Since the objective is typically non-convex, finding its global minimum is challenging.
- Following related works that optimize the raw stress function $E_p(\mathbf{Z}; \mathbf{M}, E)$, we use stationary point iteration method.

Introduction	Preliminaries	Spatial-Universality	Optimization Objective	Framework	Experiments	Summary
0000	000	0000		00●000	0000	00
Propaga	ition					

• By computing the gradient of \mathcal{L} , setting it to 0, and rearranging the terms, we obtain the following equation:

$$Z = (1 - \alpha)D^{-1/2}AD^{-1/2}Z + (1 - \alpha)D^{-1/2}L_HD^{-1/2}Z + \alpha Z^{(0)},$$

where $\boldsymbol{H} = \boldsymbol{A} \odot \boldsymbol{M} \odot M (\boldsymbol{D}^{-1/2} \boldsymbol{Z})^{\odot - 1}$, and $\boldsymbol{L}_{\boldsymbol{H}} = \operatorname{diag}(\boldsymbol{H} \boldsymbol{1}) - \boldsymbol{H}$;

Guanyu Cui, Zhewei Wei*

Gaoling School of Artificial Intelligence Renmin University of China

• Rewriting it as an iteration form and substituting $1 - \alpha$ with β to allow more flexibility, it leads to the final propagation equation:

$$Z^{(k+1)} = (1-\alpha)D^{-1/2}AD^{-1/2}Z^{(k)} + \beta D^{-1/2}L_HD^{-1/2}Z^{(k)} + \alpha Z^{(0)};$$

• We also have the message-passing form of the propagation rule:

$$\boldsymbol{Z}_{i:}^{(k+1)} = (1-\alpha) \sum_{j \in N(i)} \frac{\boldsymbol{Z}_{i:}^{(k)}}{\sqrt{d_i d_j}} + \beta \sum_{j \in \mathcal{N}(i)} \frac{\boldsymbol{M}_{ij} \left(\boldsymbol{Z}_{i:}^{(k)} - \boldsymbol{Z}_{j:}^{(k)} \right)}{\sqrt{d_i d_j} \left\| \frac{\boldsymbol{Z}_{i:}^{(k)}}{\sqrt{d_i}} - \frac{\boldsymbol{Z}_{j:}^{(k)}}{\sqrt{d_j}} \right\|_2} + \alpha \boldsymbol{Z}_{i:}^{(0)}.$$

Guanyu Cui, Zhewei Wei*

Gaoling School of Artificial Intelligence Renmin University of China

Introduction Preliminaries Spatial-Universality Optimization Objective Framework Experiments Summary

Optional Linear and Non-Linear Transformations

- The third part is the optional linear and non-linear transformations.
- After each propagation step, we have the flexibility to incorporate them into our model.
- In our experiments without pre-designed metric matrices, such as node classification, we adopt three designs from the GCNII model:
 - a linear transformation,
 - the identity mapping,
 - and a non-linear transformation (ReLU).

Guanyu Cui, Zhewei Wei*

- The last part is the final classification function $g_{\theta}(Z^{(L)})$, which maps the embeddings to the output dimension.
- We choose a linear layer

$$g(\boldsymbol{Z}^{(L)}) = \boldsymbol{Z}^{(L)} \boldsymbol{W} + \boldsymbol{1} \boldsymbol{b}^{\top}$$

to be the classification function.

Guanyu Cui, Zhewei Wei*

Introduction 0000	Preliminaries 000	Spatial-Universality 0000	Optimization Objective	Framework 000000	Experiments ●000	Summary 00
Experime	ents					

- - We conducted "Arranging Nodes with Given Metric Matrices" experiments on synthetic graphs.
 - Additionally, we also performed supervised node classification and graph regression experiments using our MGNN model.

Introduction 0000	Preliminaries 000	Spatial-Universality 0000	Optimization Objective	Framework 000000	Experiments 0●00	Summary 00
- ·						

Experiments

- In the first experiment, we generate two stochastic block model (SBM) graphs, one homophilic and one heterophilic, with 4 blocks, each containing 50 nodes;
- The nodes features are sampled from two 2-dimensional Gaussian distributions.
- We visualize the graphs in the figures below.

Guanyu Cui, Zhewei Wei*

Gaoling School of Artificial Intelligence Renmin University of China

Introduction 0000	Preliminaries 000	Spatial-Universality 0000	Optimization Objective	Framework 000000	Experiments 00●0	Summary 00

Experiments

- For the metric matrix, if i and j are in the same class, we set *M*_{ij} = 0; otherwise, we set *M*_{ij} = 5;
- We pass the node features through 8 MGNN propagation layers, with $\alpha=0.05,\,\beta=0.5.$
- The results show that our MGNN model separates the blocks.

Guanyu Cui, Zhewei Wei*

Gaoling School of Artificial Intelligence Renmin University of China

Introduction	Preliminaries	Spatial-Universality	Optimization Objective	Framework	Experiments	Summary
0000	000	0000		000000	000●	00
Experim	ents					

- We also conducted supervised node classification and graph regression experiments, and the results are promising.
- For detailed experiment information and results, please refer to our paper.

Introduction	Preliminaries	Spatial-Universality	Optimization Objective	Framework	Experiments	Summary
0000	000	0000		000000	0000	●0
Summar	21					

- We introduced the concept of spatial-universal GNNs;
- We proposed an optimization objective and designed the MGNN model, to balance efficiency and expressive power;
- We demonstrated the effectiveness of our model through extensive experiments.

Introduction 0000 ries Spatial-l 0000

itial-Universality 00 ptimization Objectiv

Framework

Experiment: 0000 Summary ○●

Thanks!

Q&A

Contact us: cuiguanyu@ruc.edu.cn, zhewei@ruc.edu.cn

Guanyu Cui, Zhewei Wei*

Gaoling School of Artificial Intelligence Renmin University of China