Mixing Time Matters:

Accelerating Effective Resistance Estimation via Bidirectional Method

Guanyu Cui¹, Hanzhi Wang², Zhewei Wei*¹.

¹ Renmin University of China; ² BARC, University of Copenhagen

KØBENHAVNS UNIVERSITET

Introduction: Effective Resistance

- Effective Resistance (ER) originates from the analysis of electric circuits in physics.
- Given an undirected G, two nodes s and t, R(s,t) is defined as the resistance between s and t when each edge is treated as a one-ohm resistor.

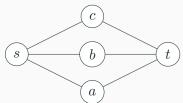
Based on physical laws and graph theory, ER can be defined as follows:

$$R(s,t) = (\boldsymbol{e}_s - \boldsymbol{e}_t)^{\top} \boldsymbol{L}^{\dagger} (\boldsymbol{e}_s - \boldsymbol{e}_t).$$

Introduction: Effective Resistance

- ER serves as a proximity metric on undirected graphs;
- Intuitively, by the principles of series and parallel circuits, a larger R(s,t) implies **fewer paths** and **weaker connectivity**.

 $\ \ \,$ Conversely, a smaller R(s,t) suggests more paths and stronger connectivity.



Introduction: Applications of Effective Resistance

- ER finds applications across many areas, including:
- Theoretical Reasearch: optimal transport [Robertson et al., arXiv'24], maximum flow [Christiano et al., STOC'11] and clustering [Alev et al., ITCS'18];
- Data Mining: influence maximization [Hong et al., COMPLEX NETWORKS'23], network robustness analysis [Yamashita et al., ICOIN'21];
- Graph Machine Learning, and Graph Neural Networks: graph rewiring [Black et al., ICML'23] and added to GNNs to enhance performance [Zhang et al., ICLR'23];

Research Focus

 We focus on estimating the single-pair effective resistance (SPER) with an absolute error guarantee:

Definition(SPER Estimation with Absolute Error Guarantee)

Given a connected undirected graph G=(V,E), two nodes $s,t\in V$, an error tolerance $\epsilon>0$, and a failure probability $0< p_f \leq 1$, find an estimator $\hat{R}(s,t)$ such that:

$$\Pr\left(\left|\hat{R}(s,t) - R(s,t)\right| < \epsilon\right) \ge 1 - p_f.$$

Existing Algorithms

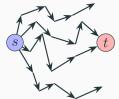
■ Transition-Probabilities-Based: express R(s,t) as a series of multi-step transition probabilities:

$$R(s,t) = \sum_{\ell=0}^{\infty} \left(\frac{p^{(\ell)}(s,s)}{d(s)} - \frac{p^{(\ell)}(s,t)}{d(t)} - \frac{p^{(\ell)}(t,s)}{d(s)} + \frac{p^{(\ell)}(t,t)}{d(t)} \right),$$

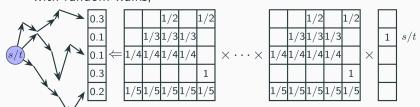
then truncate the series at some $L_{\rm max}$ (denoted as $R_{L_{\rm max}}(s,t)$) and estimate the probabilities.

Existing Algorithms

1. **EstEff-TranProb** [Peng et al., KDD'21] and **AMC** [Yang et al., SIGMOD'23]: sample a batch of random walks;



2. **GEER** [Yang et al., SIGMOD'23]: combines power iteration with random walks;



Existing Algorithms

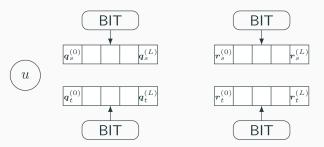
- Landmark-Based: reformulates R(s,t) using hitting probabilities.
 - Includes single-landmark methods [Liao et al., SIGMOD'23] and multi-landmark methods [Liao et al., SIGMOD'24].
 - Limitation: Cannot set parameters to achieve an error guarantee.
- Commute-Time-Based: estimates commute-time-based formulations of R(s,t). E.g., EstEff-MC [Peng et al., KDD'21].
- Laplacian-Solver-Based: solves $Lx=(e_s-e_t)$ and computes ER. Theoretically sound but challenging to implement in practice.

Our Algorithm

- Our approach: improves upon Transition-Probabilities-Based algorithms;
- Core idea: combine Forward Push using Binary Indexed Trees (BITs) with a Backward Adaptive Monte Carlo phase;

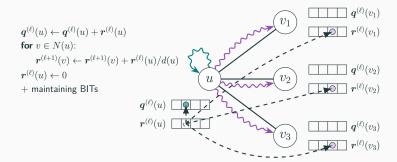
Algorithm: Preparation

- For each node $u \in V$ and step $0 \le \ell \le L_{\max}$, maintain two types of quantities:
 - reserves $q_s^{(\ell)}(u), q_t^{(\ell)}(u)$: accumulated probability mass;
 - residues $r_s^{(\ell)}(u), r_t^{(\ell)}(u)$, probability mass yet to be propagated to the next layer.
- Attach a Binary Indexed Tree (BIT) to each node's reserve and residue vectors;
 - BIT is a data structure that dynamically maintains prefix sums of an array.



Algorithm: Forward Push Phase

- Initialize ${m r}_s^{(0)}(s)=1$ and ${m r}_t^{(0)}(t)=1$, set the rest to zero.
- Then, for layer $\ell=0,1,\cdots,L_{\max}$, for any node u whose degree-normalized residue $r_s^{(\ell)}(u)/d(u)$ or $r_t^{(\ell)}(u)/d(u)$ exceeds a threshold r_{\max} , invoke the following Forward Push procedure:



Algorithm: Monte Carlo Phase

 A key insight: following invariant holds throughout the Forward Push phase [Modified from Banerjee et al., NIPS'15, and Lofgren et al., WSDM'16]:

$$p^{(\ell)}(s,t) = q_s^{(\ell)}(t) + d(t) \sum_{k=0}^{\ell} \sum_{v \in V} \frac{r_s^{(\ell-k)}(v)}{d(v)} p^{(k)}(t,v).$$

• We can sample random walks to estimate $p^{(k)}(t,v)$, which allows us to construct an estimator for the truncated ER $R_{L_{\max}}(s,t)$.

Algorithm: Monte Carlo Phase

- Sample multiple L_{\max} -step random walks from both s and t.
- For the *i*-th walk, denote the sampled nodes be $s = v_{s,i}^{(0)}, v_{s,i}^{(1)}, \cdots, v_{s,i}^{(L_{\max})}, \ t = v_{t,i}^{(0)}, v_{t,i}^{(1)}, \cdots, v_{t,i}^{(L_{\max})}.$
- The estimator is defined as follows:

$$\begin{split} \hat{R}_{L_{\max}}(s,t) &= \sum_{\ell=0}^{L_{\max}} \left(\frac{q_s^{(\ell)}(s)}{d(s)} - \frac{q_s^{(\ell)}(t)}{d(t)} \right) + \sum_{\ell=0}^{L_{\max}} \left(\frac{q_t^{(\ell)}(t)}{d(t)} - \frac{q_t^{(\ell)}(s)}{d(s)} \right) \\ &+ \frac{1}{N} \sum_{i=1}^{N} \sum_{\ell=0}^{L_{\max}} \underbrace{\left(\sum_{k=0}^{L_{\max}-\ell} \frac{r_s^{(k)}(v_{s,i}^{(\ell)})}{d(v_{s,i}^{(\ell)})} - \sum_{k=0}^{L_{\max}-\ell} \frac{r_t^{(k)}(v_{t,i}^{(\ell)})}{d(v_{t,i}^{(\ell)})} \right)}_{\text{query BIT}} \\ &+ \frac{1}{N} \sum_{i=1}^{N} \sum_{\ell=0}^{L_{\max}} \underbrace{\left(\sum_{k=0}^{L_{\max}-\ell} \frac{r_t^{(k)}(v_{t,i}^{(\ell)})}{d(v_{t,i}^{(\ell)})} - \sum_{k=0}^{L_{\max}-\ell} \frac{r_s^{(k)}(v_{s,i}^{(\ell)})}{d(v_{s,i}^{(\ell)})} \right)}_{\text{query BIT}}. \end{split}$$

Theoretical Analysis

- First, our estimator $\hat{R}_{L_{\max}}(s,t)$ is **unbiased** for the truncated ER $R_{L_{\max}}(s,t)$ and satisfies the error guarantee.
- Then, through a refined analysis, we derive the worst-case time complexity of our BiSPER algorithm

$$\tilde{O}\left(\min\left\{\frac{L_{\max}^3}{\epsilon^2 d^2}, \frac{L_{\max}^{7/3}}{\epsilon^{2/3}}, mL_{\max}\right\}\right).$$

Theoretical Analysis

• Comparision with other algorithms:

Method	Query Time			
EstEff-TranProb [Peng et al., KDD 2021]	$ ilde{O}\left(rac{L_{ ext{max}}^4}{\epsilon^2} ight)$			
AMC / GEER [Yang et al., SIGMOD 2023]	$ ilde{O}\left(rac{\epsilon^2}{\epsilon^2} ight) \ ilde{O}\left(rac{L_{ ext{max}}^3}{\epsilon^2 d^2} ight)$			
EstEff-MC [Peng et al., KDD 2021]	$\tilde{O}\left(\frac{m}{(1-\lambda_2)^2\epsilon^2d}\right)$			
Laplacian Solvers	$\tilde{O}\left(m\right)$			
BiSPER (Ours)	$\tilde{O}\left(\min\left\{\frac{L_{\max}^{7/3}}{\epsilon^{2/3}}, \frac{L_{\max}^3}{\epsilon^2 d^2}, mL_{\max}\right\}\right)$			

Experiments

- We tested three scenarios on six real-world datasets and one Erdős-Rényi random graph with parameters (n,p)=(5000,0.005);
- Graph statistics:

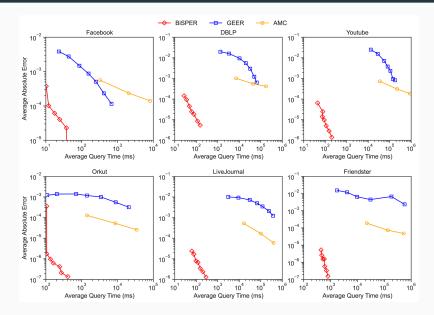
Name	n	m	d_{\min}	d_{\max}	\bar{d}	λ
Facebook	4,039	88,234	1	1045	43.69	0.9992
DBLP	317,080	1,049,866	1	343	6.62	0.9973
Youtube	1,134,890	2,987,624	1	28754	5.27	0.9980
Orkut	3,072,441	117,185,083	1	33313	76.28	0.9948
LiveJournal	3,997,962	34,681,189	1	14815	17.35	0.9999
Friendster	65,608,366	1,806,067,135	1	5214	55.06	0.9995

• For each dataset, we randomly selected 100 node pairs to evaluate the performance of each algorithm.

Experiment I: Efficiency for $R_{L_{\max}}(s,t)$ **on Real-World Graphs**

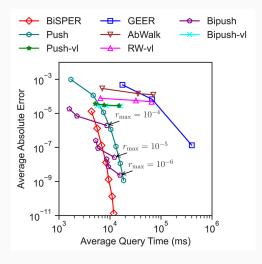
- Set $L_{\rm max}=100$ and measure algorithms' query efficiency for truncated ER $R_{L_{\rm max}}(s,t)$ on real-world graphs;
- Accurately approximating SPER requires large $L_{\rm max}$ values $(10^3 \sim 10^4)$, and computing the ground-truth on large graphs via Power Iteration is impractical.

Experiment I: Efficiency for $R_{L_{\max}}(s,t)$ **on Real-World Graphs**



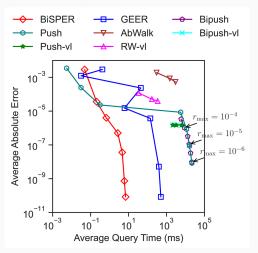
Experiment II: Efficiency for R(s,t) **on Real-World Graphs**

• For smaller graphs, we can afford a large enough $L_{\rm max}$ to accurately approximate ER.



Experiment III: Query Efficiency for R(s,t) **on Synthetic Graphs**

Follows the same setup as Experiment II, but on a synthetic Erdős-Rényi random graph with parameters (n,p)=(5000,0.005).



Thanks!
Contact: cuiguanyu@ruc.edu.cn