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Introduction: Effective Resistance

= Effective Resistance (ER) originates from the analysis of
electric circuits in physics.
= Given an undirected G, two nodes s and ¢, R(s,t) is defined

as the resistance between s and ¢ when each edge is treated

as a one-ohm resistor.
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= Based on physical laws and graph theory, ER can be defined

as follows:

R(s,t) = (es — et)TLT(eS —ey).
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Introduction: Effective Resistance

= ER serves as a proximity metric on undirected graphs;

= Intuitively, by the principles of series and parallel circuits, a
larger R(s,t) implies fewer paths and weaker connectivity.

O—C(—0e—0

= Conversely, a smaller R(s,t) suggests more paths and stronger

connectivity.
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Introduction: Applications of Effective Resistance

= ER finds applications across many areas, including:

= Theoretical Reasearch: optimal transport [Robertson et al.,
arXiv'24], maximum flow [Christiano et al., STOC'11] and
clustering [Alev et al., ITCS'18];

= Data Mining: influence maximization [Hong et al.,
COMPLEX NETWORKS'23], network robustness analysis
[Yamashita et al., ICOIN'21];

= Graph Machine Learning, and Graph Neural Networks:
graph rewiring [Black et al., ICML'23] and added to GNNs to
enhance performance [Zhang et al., ICLR'23];
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Research Focus

= We focus on estimating the single-pair effective resistance
(SPER) with an absolute error guarantee:

Definition(SPER Estimation with Absolute Error Guarantee)

Given a connected undirected graph G = (V, E), two nodes
s,t € V, an error tolerance € > 0, and a failure probability
0 < py < 1, find an estimator R(s,t) such that:

Pr (’R(s,t) _ R(s,t)’ < e) >1—py.
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Existing Algorithms

= Transition-Probabilities-Based: express R(s,t) as a series
of multi-step transition probabilities:

= (p9(s,8) pO(s,t)  pO(ts)  pO(t )
R“’t)_Z( a(s) an - ds) a0 )

=0

then truncate the series at some Ly,.x (denoted as
Ryr,..(s,t)) and estimate the probabilities.
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Existing Algorithms

1. EstEff-TranProb [Peng et al., KDD'21] and AMC [Yang et

al., SIGMOD'23]: sample a batch of random walks;
7

2. GEER [Yang et al., SIGMOD'23]: combines power iteration
with random walks;
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Existing Algorithms

= Landmark-Based: reformulates R(s,t) using hitting
probabilities.

= Includes single-landmark methods [Liao et al., SIGMOD'23]
and multi-landmark methods [Liao et al., SIGMOD'24].
= Limitation: Cannot set parameters to achieve an error
guarantee.
= Commute-Time-Based: estimates commute-time-based
formulations of R(s,t). E.g., EstEff-MC [Peng et al.,
KDD'21].
= Laplacian-Solver-Based: solves Lz = (e; — e;) and
computes ER. Theoretically sound but challenging to
implement in practice.
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Our Algorithm

= Qur approach: improves upon Transition-Probabilities-Based
algorithms;

= Core idea: combine Forward Push using Binary Indexed
Trees (BITs) with a Backward Adaptive Monte Carlo
phase;
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Algorithm: Preparation

= For each node u € V and step 0 < £ < Ly, Maintain two
types of quantities:

« reserves g\ (u),qge) (u): accumulated probability mass;

= residues rga(u),rié)(u), probability mass yet to be
propagated to the next layer.
= Attach a Binary Indexed Tree (BIT) to each node's reserve
and residue vectors;
= BIT is a data structure that dynamically maintains prefix sums

of an array.
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Algorithm: Forward Push Phase

Initialize rgo)(s) =1 and r§°) (t) =1, set the rest to zero.
Then, for layer £ = 0,1, -+, Lyax, for any node u whose
degree-normalized residue rf (u)/d(u) or rl(f) (u)/d(u)
exceeds a threshold 7., invoke the following Forward Push

procedure:

LT ¢¥ ()
a9(u) + q9(u) + 7O (u) LIl ] 7O(w)

for v € N(u): 2°°

rED () «— ED () + 7O (u) /d(u)
0w e 0 [T ¢w)
-+ maintaining BITs _E@:‘ 7'(0(12)
2(u) CgLT:]

() (T [T 40s)
o [T r(us)
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Algorithm: Monte Carlo Phase

= A key insight: following invariant holds throughout the

Forward Push phase [Modified from Banerjee et al., NIPS'15,
and Lofgren et al., WSDM'16]:

¢ r(f_k) (v)
PO05,0) = 00 +d0 3 3 7o

) p k) (t’ ’U).
k=0veV

= We can sample random walks to estimate p(¥)(t,v), which
allows us to construct an estimator for the truncated ER
RLmax(S7 t)
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Algorithm: Monte Carlo Phase

= Sample multiple Lyax-step random walks from both s and ¢.
= For the i-th walk, denote the sampled nodes be
© @ o pEmax) (0 () (Emax)
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= The estimator is defined as follows:
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Theoretical Analysis

= First, our estimator Ry (s,t) is unbiased for the truncated
ER Rp,..(s,t) and satisfies the error guarantee.

= Then, through a refined analysis, we derive the worst-case
time complexity of our BiSPER algorithm

. [13,. L3
O (mm { 6;“;2’(, 62—;;, mLmax .
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Theoretical Analysis

= Comparision with other algorithms:

Method

Query Time

EstEff-TranProb [Peng et al., KDD 2021]
AMC / GEER [Yang et al., SIGMOD 2023]

EstEff-MC [Peng et al., KDD 2021]

Laplacian Solvers

A Li]ax
A Li)ax

m

(1 - )\2)262(1
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BiSPER (Ours)
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= We tested three scenarios on six real-world datasets and one
Erdds-Rényi random graph with parameters
(n,p) = (5000,0.005);

= Graph statistics:

Name n m  dmin  dmax d A
Facebook 4,039 88,234 1 1045 43.69 0.9992
DBLP 317,080 1,049,866 1 343 6.62 0.9973
Youtube 1,134,890 2,987,624 1 28754 5.27 0.9980
Orkut 3,072,441 117,185,083 1 33313 76.28 0.9948
LiveJournal 3,997,962 34,681,189 1 14815 17.35 0.9999
Friendster 65,608,366 1,806,067,135 1 5214 55.06 0.9995

= For each dataset, we randomly selected 100 node pairs to
evaluate the performance of each algorithm.
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Experiment |: Efficiency for R, . (s,t) on Real-World Graphs

= Set Liax = 100 and measure algorithms' query efficiency for
truncated ER Ry . (s,t) on real-world graphs;

= Accurately approximating SPER requires large Liyax values
(103 ~ 10%), and computing the ground-truth on large graphs
via Power lteration is impractical.
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Experiment |: Efficiency for R, t) on Real-World Graphs
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Experiment Il: Efficiency for R(s,t) on Real-World Graphs

= For smaller graphs, we can afford a large enough Ly ax to
accurately approximate ER.
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Experiment I11l: Query Efficiency for (s, ¢) on Synthetic Graphs

= Follows the same setup as Experiment Il, but on a synthetic
Erd6s-Rényi random graph with parameters
(n,p) = (5000,0.005).
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Thanks!

Contact: cuiguanyu@ruc.edu.cn



